

MARPLE: A Benchmark for Long-Horizon Inference

Emily Jin*, Zhuoyi Huang*, Jan-Philipp Fränken, Weiyu Liu, Hannah Cha, Erik Brockbank, Sarah A. Wu, Ruohan Zhang, Jiajun Wu, Tobias Gerstenberg

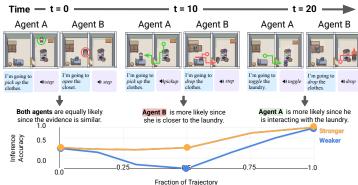
Motivation

Everyday, we solve a number of "whodunit" problems that require long horizon inferences.

Humans draw on their understanding of the physical world, human behaviors, and multimodal cues (vision, language, audio).

Inference Scenarios

MARPLE challenges models to figure out who did it by:


- Reasoning over long time horizons.
- · Reasoning at a high-level about complex scenarios.
- Integrating evidence from multiple modalities.

Problem Setup

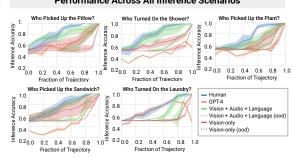
Which agent is more likely to have turned on the laundry? Answer: Agent A

Contributions

Multimodal Simulator

- . Diverse agent behaviors of semantically rich activities
- Within procedurally generated households
- Multimodal evidence (vision, language, audio)

Inference Scenarios


- 5 inference scenarios. varving in difficulty
- · Pre-collected datasets for training & evaluation
- Evaluation Metric: when method achieves high inference accuracy

Benchmark Experiments

- Performance of ML baselines (simulation w/ learned agent models. GPT-4)
- . Behavioral study with human participants

Results

Performance Across All Inference Scenarios

- Humans outperform all AI baselines.
- GPT-4 fails to converge for two scenarios.
- Simulation models (V+A+L, V) converge but struggle to generalize.

Generalization of Simulation Baselines

Table: Evidence (fraction of trajectory) to achieve 0.8 accuracy.

		Human	Vision + Audio + Language	Vision + Language	Vision + Audio	Vision Only
	ID ‡	0.48	0.58	0.64	0.80	0.85
	00D !	0.48	0.81	0.85	0.91	0.92

Humans make accurate predictions earlier, especially OOD. For even the best simulation baseline, performance drops by 23%.