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Abstract

Collaboration requires agents to coordinate their behavior on the fly, sometimes cooperating to

solve a single task together and other times dividing it up into sub-tasks to work on in parallel.

Underlying the human ability to collaborate is theory-of-mind (ToM), the ability to infer the hidden

mental states that drive others to act. Here, we develop Bayesian Delegation, a decentralized multi-

agent learning mechanism with these abilities. Bayesian Delegation enables agents to rapidly infer

the hidden intentions of others by inverse planning. We test Bayesian Delegation in a suite of multi-

agent Markov decision processes inspired by cooking problems. On these tasks, agents with Baye-

sian Delegation coordinate both their high-level plans (e.g., what sub-task they should work on) and

their low-level actions (e.g., avoiding getting in each other’s way). When matched with partners that

act using the same algorithm, Bayesian Delegation outperforms alternatives. Bayesian Delegation is

also a capable ad hoc collaborator and successfully coordinates with other agent types even in the

absence of prior experience. Finally, in a behavioral experiment, we show that Bayesian Delegation

makes inferences similar to human observers about the intent of others. Together, these results argue

for the centrality of ToM for successful decentralized multi-agent collaboration.
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1. Introduction

Working together enables a group of agents to achieve together what no individual

could achieve on their own (Henrich, 2015; Tomasello, 2014). However, collaboration is

challenging as it requires agents to coordinate their behaviors. In the absence of prior

experience, social roles, and norms, we still find ways to negotiate our joint behavior in

any given moment to work together with efficiency (Misyak, Melkonyan, Zeitoun, &

Chater, 2014; Tomasello, Carpenter, Call, Behne, & Moll, 2005). Whether we are writing

a scientific manuscript with collaborators or preparing a meal with friends, core questions

we ask ourselves are: How can I help out the group? What should I work on next, and

with whom should I do it with? Figuring out how to flexibly coordinate a collaborative

endeavor is a fundamental challenge for any agent in a multi-agent world. Coordination

unfolds over many timescales, and these commonsense abilities are at the core of human

social intelligence. In order to build social machines, we must engineer artificial intelli-

gence systems that can coordinate with us and with each other as rapidly and as flexibly

as people do (Lake, Ullman, Tenenbaum, & Gershman, 2017).

Central to this challenge is that agents’ reasoning about what they should do in a mul-

ti-agent context depends on the future actions and intentions of others. When agents, like

people, make independent decisions, these intentions are unobserved. Actions can reveal

information about intentions, but predicting them is difficult because of uncertainty and

ambiguity—multiple intentions can produce the same action. In humans, the ability to

understand intentions from actions is called theory-of-mind (ToM). Humans rely on this

ability to cooperate in coordinated ways, even in novel situations (Shum, Kleiman-Wei-

ner, Littman, & Tenenbaum, 2019; Tomasello et al., 2005). We aim to build agents that

have these kinds of abilities and show that they are powerful building blocks for coordi-

nated cooperation.

In this work, we study these abilities in the context of multiple agents cooking a meal

together, inspired by the video game Overcooked (Ghost Town Games, 2016). These

problems have hierarchically organized sub-tasks and share many features with other

object-oriented tasks such as construction and assembly. These sub-tasks allow us to

study agents that are challenged to coordinate in three distinct ways: (A) Divide and con-

quer: Agents should work in parallel when sub-tasks can be efficiently carried out indi-

vidually. (B) Cooperation: Agents should work together on the same sub-task when most

efficient or necessary. (C) Spatiotemporal movement: Agents should avoid getting in each

other’s way at any time.

To illustrate, imagine the process required to make a simple salad: first chopping both

tomato and lettuce and then assembling them together on a plate. Two people might col-

laborate by first dividing the sub-tasks up: One person chops the tomato and the other

chops the lettuce. This doubles the efficiency of the pair by completing sub-tasks in
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parallel (challenge A). On the other hand, some sub-tasks may require multiple people to

work together. If only one person can use the knife and only the other can reach the

tomatoes, then they must cooperate to chop the tomato (challenge B). In all cases, agents

must coordinate their low-level actions in space and time to avoid interfering with others

and be mutually responsive (challenge C).

Our work builds on a long history of using cooking tasks for evaluating multi-agent

coordination across hierarchies of sub-tasks (Cohen & Levesque, 1991; Grosz & Kraus,

1996; Tambe, 1997). Most recently, environments inspired by Overcooked have been

used in deep reinforcement learning studies where agents are trained by self-play or by

imitating humans (Carroll et al., 2019; Song, Wang, Lukasiewicz, Xu, & Xu, 2019). In

contrast, our approach is based on techniques that dynamically learn during a single inter-

action rather than requiring large amounts of pre-training experience for a specific envi-

ronment, team configuration, and sub-task structure. Instead, our work shares goals with

the ad hoc coordination literature, where agents must adapt on the fly to variations in

task, environment, or team (Barrett, Stone, & Kraus, 2011; Chalkiadakis & Boutilier,

2003; Stone, Kaminka, Kraus, & Rosenschein, 2010). Other prior work is often limited to

action coordination (e.g., chasing or hiding) rather than coordinating actions across and

within sub-tasks. Our approach to this problem takes inspiration from the cognitive

science of how people coordinate their cooperation in the absence of communication

(Kleiman-Weiner, Ho, Austerweil, Littman, & Tenenbaum, 2015). Specifically, we build

on recent algorithmic progress in Bayesian ToM (Baker, Jara-Ettinger, Saxe, & Tenen-

baum, 2017; Nakahashi, Baker, & Tenenbaum, 2016; Ramırez & Geffner, 2011; Shum

et al., 2019) and learning statistical models of others (Barrett, Stone, Kraus, & Rosenfeld,

2012; Melo & Sardinha, 2016), and extend these works to decentralized multi-agent con-

texts.

Our strategy for multi-agent hierarchical planning builds on previous work linking

high-level coordination (sub-tasks) to low-level navigation (actions; Amato, Konidaris,

Kaelbling, & How, 2019). In contrast to models which have explicit communication

mechanisms or centralized controllers (Brunet, Choi, & How, 2008; McIntire, Nunes, &

Gini, 2016), our approach is fully decentralized and our agents are never trained together.

Prior work has also investigated ways in which multi-agent teams can mesh inconsistent

plans (e.g., two agents doing the same sub-task by themselves) into consistent plans (e.g.,

the agents perform different sub-tasks in parallel; Cox & Durfee, 2004, 2005), but these

methods have also been centralized. We draw more closely from decentralized multi-

agent planning approaches for best response (Claes, Oliehoek, Baier, & Tuyls, 2017;

Claes et al., 2015) and multi-agent plan recognition for spatial inference (Saria &

Mahadevan, 2004; Sukthankar & Sycara, 2006). These prior works focus on simpler tasks

with spatial sub-tasks called Spatial Task Allocation Problems (SPATAPs). There are no

mechanisms for agents to cooperate on the same sub-task as each sub-task is spatially

distinct.

Here, we develop Bayesian Delegation, a new algorithm for decentralized multi-agent

coordination that rises to the challenges described above. Bayesian Delegation leverages

Bayesian inference with inverse planning to rapidly infer the sub-tasks others are working
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on. Our probabilistic approach allows agents to predict the intentions of other agents

under uncertainty and ambiguity. These inferences allow agents to efficiently delegate

their own efforts to the most high-value collaborative tasks for collective success. We

quantitatively measure the performance of Bayesian Delegation in a suite of novel multi-

agent environments. First, Bayesian Delegation outperforms existing approaches, complet-

ing all environments in less time than alternative approaches and maintaining perfor-

mance even when scaled up to three-player teams in a constrained space. Second, we

show Bayesian Delegation is a powerful ad hoc collaborator. It performs better than alter-

natives when paired with agents of a different type. Finally, in a behavioral experiment,

human participants observed others interact and made inferences about the sub-tasks they

were working on. Bayesian Delegation aligned with many of the fine-grained variations

in human judgments. Although the model was never trained on human data or other

agents’ behavior, it was the best ad hoc collaborator and predictor of human inferences.

2. Multi-agent MDPs with sub-tasks

A multi-agent Markov decision process with sub-tasks is described as a tuple

hn,S,A1,...,n,T , R, γ,Ti where n is the number of agents and s∈S are object-oriented

states specified by the locations, status and type of each object, and agent in the environ-

ment (Boutilier, 1996; Diuk, Cohen, & Littman, 2008). A1,...,n is the joint action space

with ai∈Ai the set of actions available to agent i; each agent chooses its own actions

independently. T s, a1,...,n, s
0ð Þ is the transition function which describes the probability of

transitioning from state s to s0 after all agents act a1,...,n. R s, a1,...,nð Þ is the reward function

shared by all agents and γ is the discount factor. Each agent aims to find a policy πi(s)
that maximizes expected discounted reward. Agents do not observe the policies π−i(s) (−i
refers to all agents except i) or any other internal representations of others.

Unlike the traditional multi-agent Markov decision process, the environments we study

have a partially ordered set of sub-tasks T¼ T0, . . .,TTj j
� �

, which is generated by rep-

resenting each recipe as an instance of the planning language STRIPS (Fikes & Nilsson,

1971). Each instance consists of an initial state, a specification of the goal state, and a set

of sub-tasks Ti. Each sub-task has preconditions that specify when the sub-task can be

started and postconditions that specify when it is completed. They provide structure when

R is very sparse. These sub-tasks are also the target of high-level coordination between

agents. In this work, all sub-tasks can be expressed as Merge (X, Y), that is, to

bring X and Y into the same location. Unlike in SPATAPs, both X and Y can be mov-

able. In the cooking environments we study here, the partial order of sub-tasks refers to a

“recipe.” Fig. 1 shows an example of sub-task partial orders for a recipe. Our task struc-

tures are inspired by prior work on both the cooking domain (Carroll et al., 2019; Grosz

& Kraus, 1996; Song et al., 2019) and others (Amato et al., 2019; Guestrin, Venkatara-

man, & Koller, 2002).

For instance, for the STRIPS instance of the recipe Tomato, the initial state is the ini-

tial configuration of the environment (i.e., all objects and their states), the specification of
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the goal state is Delivery[Plate[Tomato.chopped]], and the sub-

tasks are the Merge operators in Fig. 2. A plan for a STRIPS instance is a sequence of

high-level actions that can be executed from the initial state and results in a goal state.

Examples of such plans are shown in Fig. 2. To generate these partial orderings, we con-

struct a graph for each recipe in which the nodes are the states of the environment objects

and the edges are valid actions. We then run breadth-first-search starting from the initial

state to determine the nearest goal state, and explore all shortest “recipe paths” between

the two states. The environment then returns T, the set of possible high-level actions

which terminate at a completed recipe.

The partial order of sub-tasks (T) introduces two coordination challenges. First,

Merge does not specify how to implement that sub-task in terms of efficient actions

nor which agent(s) should work on it. Second, because the ordering of sub-tasks is par-

tial, the sub-tasks can be accomplished in many different orders. For instance, in the

Salad recipe (Fig. 1b), once the tomato and lettuce are chopped, they can (a) first com-

bine the lettuce and tomato and then plate, (b) the lettuce can be plated first and then add

the tomato, or (c) the tomato can be plated first and then add the lettuce. These distinct

orderings make coordination more challenging since to successfully coordinate, agents

must align their ordering of sub-tasks to effectively complete the task.

2.1. The Overcooked coordination test suite

We now describe the Overcooked-inspired environments we use as a test suite for

evaluating multi-agent collaboration.1 The goal in each environment is to cook a recipe

in as few time steps as possible. The episode terminates after either the agents bring the

finished recipe dish to the star square or 100 time steps elapse. Each environment is a 2D

grid-world kitchen. Fig. 1a shows an example kitchen layout, and Fig. 2 shows the full

set of recipes used in our evaluations.

Fig. 1. The Overcooked environment. (a) The Partial-Divider kitchen offers many counters for objects, but

forces agents to either move through a narrow bottleneck or pass objects across the divider. (b) The Salad
recipe in which two chopped foods must be combined on a single plate and delivered, and (c) one of the

many possible orders that each part of the recipe can be completed. All sub-tasks are expressed using the

Merge operator. By combining different recipes with different kitchens, we can generate combinatorial

variation in high-level goals and low-level navigation challenges.
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The kitchens are built from counters that contain both movable food and plates and

immovable stations (e.g., knife stations). The state is represented as a list of entities and

their type, location, and status (Diuk et al., 2008). See Table 1 for a description of the

different entities, the dynamics of object interactions, and the statuses that are possible.

Agents (the chef characters) can move north, south, east, west, or stay still. All agents

move simultaneously. They cannot move through each other, into the same space, or

through counters. If they try to do so, they remain in place instead. Agents pick up

objects by moving into them and put down objects by moving into a counter while hold-

ing them. Agents chop foods by carrying the food to a knife station. Food can be merged

with plates. Agents can only carry one object at a time and cannot directly pass objects

to each other.

This test suite allows us to evaluate models based on the coordination challenges

raised in the introduction. The recipes assess rapid convergence—for instance, the Salad
recipe can be assembled in multiple ways and agents’ plans must align—and the spatial

layouts provide opportunities for multiple agents to work together advantageously and/or

avoid navigational obstacles. Thus, these environments enable us to study multi-agent

coordination across levels of hierarchical planning.

Fig. 2. Correlation between model and human inferences. Our model (BD, far left) is more aligned with

human judgments than the alternative models.
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3. Computational model: Bayesian Delegation

We now introduce Bayesian Delegation, a novel algorithm for multi-agent coordination

that uses inverse planning to make probabilistic inferences about the sub-tasks other

agents are performing. Bayesian Delegation models the latent intentions of others in order

to dynamically decide whether to divide-and-conquer or to cooperate on each sub-task,

and an action planner that finds approximately optimal policies that implement divide-

and-conquer or cooperation. Note that planning is decentralized at both levels, that is,

agents plan and learn for themselves without any access to each other’s internal represen-

tations. Probabilistic inference of the sub-tasks others are working on enables each agent

to select the best sub-task when multiple are possible. Agents maintain and update a

belief state over the possible sub-tasks that all agents (including itself) are likely working

on based on a history of observations that is commonly observed by all.

Formally, Bayesian Delegation maintains a probability distribution over allocations of

each agent to a sub-task. Let ta be the set of all possible allocations of agents to sub-

tasks where all agents are assigned to a sub-task. For example, if there are two sub-tasks

( T1,T2½ �) and two agents ([i, j]), then ta¼ i :T1, j :T2ð Þ, i :T2, j :T1ð Þ, i :T1,ð½
j :T1Þ, i :T2, j :T2ð Þ�, where i: T1 means that agent i is “delegated” to sub-task T1.

Thus, ta includes both the possibility that agents will divide and conquer (work on sepa-

rate sub-tasks) and the possibility that they will cooperate (work on shared sub-tasks). If

all agents pick the same ta∈ta, then they will easily coordinate. However, in our

Table 1

State representation and transitions for the objects and interactions in the Overcooked environments. The two

food items (tomato and lettuce) can be in either chopped or unchopped states. Objects with status ½� are able

to “hold” other objects. For example, an Agent holding a Plate holding an unchopped tomato would be

denoted Agent[Plate[Tomato.unchopped]]. Once combined, these nested objects share

the same {x, y} coordinates and movement. Interaction dynamics occur when the two objects are in the same

{x, y} coordinates

Object state representation

Type Location Status

Agent {x, y} []

Plate {x, y} []

Counter {x, y} []

Delivery {x, y} []

Knife {x, y} N/A

Tomato {x, y} {chopped, unchopped}

Lettuce {x, y} {chopped, unchopped}

Interaction dynamics

Food.unchopped + Knife → Food.chopped + Knife

Food1 + Food2 → [Food1, Food2]

X + Y[] → Y[X]

S. A. Wu et al. / Topics in Cognitive Science (2021) 7



environments, agents cannot communicate before or during execution, so they maintain

uncertainty about which ta the group is coordinating on, P(ta).
At every time step, each agent selects the most likely allocation

ta∗¼ argmax taPðtajH0:TÞ, where PðtajH0:TÞ is the posterior over ta after having observed

a history of actions H0:T ¼ s0, a0ð Þ, . . ., sT , aTð Þ½ � of T time steps and a t are all agents’

actions at time step t. The agent then plans the next best action according to ta* using

model-based reinforcement learning (described below). The posterior is computed by

Bayes rule:

P tajH0:Tð Þ/P tað ÞP H0:T jtað Þ¼P tað Þ
YT
t¼0

P atjst, tað Þ, (1)

where P(ta) is the prior over ta and Pðatjst, taÞ is the likelihood of actions at time step t
for all agents. Note that these belief updates do not explicitly consider the private knowl-

edge that each agent has about their own intention at time t − 1. Instead, each agent per-

forms inference based only on the history observed by all, that is, the information a third-

party observer would have access to (Nagel, 1986). The likelihood of a given ta is the

likelihood that each agent i is following their assigned task (Ti) in that ta.

Pðatjst, taÞ/
Y

i:T∈ ta

exp β � Q∗
Ti

s, aið Þ
� �

, (2)

where Q∗
Ti

s, aið Þ is the expected future reward of a toward the completion of sub-task Ti

for agent i. The soft-max of reward accounts for nonoptimal and variable behavior as is

typical in other Bayesian ToM work (Baker et al., 2017; Kleiman-Weiner et al., 2015;

Shum et al., 2019). β controls the degree to which an agent believes others are perfectly

optimal. When β!∞, the agent believes others are acting randomly. When β!∞, the

agent believes others are perfectly maximizing. Since the likelihood is computed by a

model based planner, this approach to posterior inference is called inverse planning. Note

that even though agents see the same history of states and actions, their belief updates

will not necessarily be the same because updates come from QTi
, which is computed

independently for each agent and is affected by stochasticity in exploration.

The prior over P(ta) is computed directly from each agent’s observation of the envi-

ronment. First, P(ta) = 0 for all ta that have sub-tasks without satisfied preconditions.

We set the remaining priors to P tað Þ/ ∑
T∈ ta

1
VT sð Þ

, where VT sð Þ is the estimated value of

the current state under sub-task T. This returns ta that can be accomplished in less time

a higher prior probability. Priors are reinitialized when new sub-tasks have their precondi-

tions satisfied and when others are completed.

Action planning transforms sub-task allocations into efficient actions and provides the

critical likelihood for Bayesian Delegation (see Eq. 1). Action planning takes the ta
selected by Bayesian Delegation and outputs the next best action while modeling the

movements of other agents. In this work, we use bounded real-time dynamic
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programming (BRTDP) extended to a multi-agent setting to find approximately optimal

Q-values and policies (McMahan, Likhachev, & Gordon, 2005):

Vb
Ti

sð Þ ¼ min
a∈Ai

Qb
Ti

s, að Þ, Vb
Ti

gð Þ¼ 0,

Qb
Ti

s, að Þ ¼CTi
s, að Þþ ∑

s0∈S

Tðs0js, aÞVb
Ti

s0ð Þ,

where C is cost and b¼ l, u½ � is the lower and upper bound, respectively. Each time step is

penalized by a cost of 1 and movement (as opposed to staying still) by an additional cost of

0.1. This cost structure incentivizes efficiency in movement. The lower bound was initial-

ized to the Manhattan distance between objects (which ignores barriers). The upper bound

was initialized to the sum of the shortest paths between objects, which ignores the possibil-

ity of more efficiently passing objects. While BRTDP and these heuristics are useful for the

specific spatial environments and sub-task structures we develop here, it could be replaced

with any other algorithm for finding an approximately optimal single-agent policy for a

given sub-task. For details on how BRTDP updates V and Q, see McMahan et al. (2005).

BRTDP was run until the bounds converged (α = 0.01, τ = 2) or for a maximum of 100

trajectories each with up to 75 rollouts for all models. The softmax during inference used

β = 1.3 (this value was chosen to be consistent with a behavioral experiment described

below). At each time step, agents select the action with the highest value for their sub-task.

When agents have no valid sub-tasks, they take a random action (uniform across the four

directions of movement and stay-in-place actions). This random motion improves the per-

formance of the alternative models since the agents often get stuck and block each other

from completing the recipe. The random motion does not impact Bayesian Delegation

because agents are always assigned to a sub-task.

Agents use ta* from Bayesian Delegation to address two types of low-level coordina-

tion problems: (a) avoiding getting in each others way while working on distinct sub-

tasks, and (b) cooperating efficiently when working on a shared sub-task. ta* contains

agent i’s best guess about the sub-tasks carried out by others, T�i. In the first case,

Ti≠T�i. Agent i first creates models of the others performing T�i assuming other

agents are stationary (π0T�i
ðsÞ, level-0 models). These level-0 models are used to reduce

the multi-agent transition function to a single agent transition function T 0 where the tran-

sitions of the other agents are assumed to follow the level-0 policies,

T 0ðs0js, a�iÞ¼∑
ai
Tðs0js, a�i, aiÞ

Q
A∈�i

π0TA
ðsÞ. Running BRTDP on this transformed environ-

ment finds an approximately optimal level-1 policy π1Ti
ðsÞ for agent i that “best responds”

to the level-0 models of the other agents. This approach is similar to level-K or cognitive

hierarchy (Kleiman-Weiner et al., 2015; Shum et al., 2019; Wright, 2010).

When Ti¼T�i, agent i attempts to work together on the same sub-task with the other

agent(s). To do this, the agent simulates a fictitious centralized planner that controls the

actions of all agents working together on the same sub-task (Kleiman-Weiner et al.,

2015). This transforms the action space: If both i and j are working on Ti, then

S. A. Wu et al. / Topics in Cognitive Science (2021) 9



A0 ¼ ai�aj. Joint policies πJTi
ðsÞ can similarly be found by single-agent planners such as

BRTDP. Agent i then takes the actions assigned to it under πJTi
ðsÞ. Joint policies enable

emergent decentralized cooperative behavior—agents can discover efficient and novel

ways of solving sub-tasks as a team such as passing objects across counters. Since each

agent is solving for their own πJTi
ðsÞ, these joint policies are not guaranteed to be per-

fectly coordinated due to planning stochasticity. Note that although we use BRTDP, any

other model-based reinforcement learner or planner could be used in its place.

4. Results

We evaluate the performance of Bayesian Delegation across three different experimen-

tal paradigms. First, we test the two-agent and three-agent performance of each method

paired with itself (homogeneous teams). Second, we test the “ad hoc” performance of

each method when paired with an agent of a different method (heterogeneous teams).

Finally, we test each model’s ability to predict human inferences of sub-task allocation

after observing the behavior of other agents (human inferences).

We compare the performance of Bayesian Delegation (BD) to four alternative baseline

agents: Uniform Priors (UP), which puts a uniform probability mass over all valid ta and

updates through inverse planning; Fixed Beliefs (FB), which does not update P(ta) in

response to the behavior of others; Divide and Conquer (D&C; Ephrati & Rosenschein,

1994), which sets P(ta) = 0 if that ta assigns two agents to the same sub-task (this is con-

ceptually similar to Empathy by Fixed Weight Discounting (Claes et al., 2015) because

agents cannot share sub-tasks and D&C discounts sub-tasks most likely to be attended to by

other agents proportional to P(ta|H)); and Greedy, which selects the sub-task it can complete

most quickly without considering the sub-tasks other agents are working on. End-to-end

optimization of the full recipe using techniques such as DQN (Mnih et al., 2013) and Q-

learning (Watkins & Dayan, 1992) never succeeded under our computational budget.

To highlight the differences between our model and the alternatives, let us consider an

example with two possible sub-tasks (½T1,T2�) and two agents ([i, j]). The prior for

Bayesian Delegation puts positive probability mass on ta¼ i :T1, j :T2ð Þ,½
i :T2, j :T1ð Þ, i :T1, j :T1ð Þ, i :T2, j :T2ð Þ� where i :T1 means that agent i is assigned

to sub-task T1. The UP agent proposes the same ta, but places uniform probability

across all elements, that is, PðtaÞ¼ 1
4
for all ta∈ta. FB proposes the same ta with the

same priors as Bayesian Delegation, but never updates its beliefs. The D&C agent does

not allow for joint sub-tasks, so it proposes ta¼ i :T1, j :T2ð Þ,½ i :T2, j :T1ð Þ�. Lastly,
Greedy makes no inferences; each agent i reduces the set to ta¼ i :T1ð Þ, i :T2ð Þ½ �. Note
that j does not appear.

In the first two computational experiments, we analyze the results in terms of three

key metrics. The two pivotal metrics are the number of time steps to complete the full

recipe and the total fraction of sub-tasks completed. We also analyze the average number

of shuffles, a measure of uncoordinated behavior. A shuffle is any action that negates the

previous action, such as moving left and then right, or picking an object up and then
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putting it back down. Agents are evaluated in nine different kitchen–recipe combinations

(3 recipes × 3 kitchens).

4.1. Homogeneous teams

Table 2 quantifies the performance of all agents (two- and three-agent teams) aggre-

gated across the nine environments. Bayesian Delegation outperforms all alternative mod-

els and completes recipes with less time steps and fewer shuffles. The performance gap

between Bayesian Delegation and the alternative models was even larger with three

agents. Most other agents performed worse with three agents than they did with two,

while the performance of Bayesian Delegation did not suffer. Fig. 3 breaks down perfor-

mance by kitchen and recipe. All five types of agents are comparable when given the

recipe Tomato in Open-Divider, but when faced with more complex situations, Bayesian

Delegation outperforms the others. For example, without the ability to represent shared

sub-tasks, D&C and Greedy fail in Full-Divider because they cannot explicitly coordinate

on the same sub-task to pass objects across the counters. Alternative agents were also less

capable of low-level coordination, resulting in more shuffles.

Learning about other agents is especially important for more complicated recipes that can

be completed in different orders. In particular, FB and Greedy, which do not learn, have

trouble with the Salad recipe on Full Divider. There are two challenges in this composition.

One is that the Salad recipe can be completed in three different orders: Once the tomato and

lettuce are chopped, they can either be combined together and then plated, the lettuce can be

plated first and then the tomato added, or the tomato can be plated first and then the lettuce

added. The second challenge is that no agent can perform all the sub-tasks alone; thus, they

must converge to the same order. Unless the non-learning agents coordinate by luck, they

Table 2

Performance of Bayesian Delegation and alternative models with two and three agents when all agents use

the same algorithm (homogeneous teams). All metrics are described in the text. See Fig. 2 for detailed results

of Time Steps and Completion. Averages � standard error of the mean (N = 20 random seeds each). Bolded

numbers show best performing model

Time Steps Completion Shuffles

(↓ better) (↑ better) (↓ better)

Two agents

BD (ours) 35.29 � 1.40 0.98 � 0.06 1.01 � 0.05
UP 50.42 � 2.04 0.94 � 0.05 5.32 � 0.03

FB 37.58 � 1.60 0.95 � 0.04 2.64 � 0.03

D&C 71.57 � 2.40 0.61 � 0.07 13.08 � 0.05

Greedy 71.11 � 2.41 0.57 � 0.08 17.17 � 0.06

Three agents

BD (ours) 34.52 � 1.66 0.96 � 0.08 1.64 � 0.05

UP 56.84 � 2.12 0.91 � 0.22 5.02 � 0.12

FB 41.34 � 2.27 0.92 � 0.08 1.55 � 0.05
D&C 67.21 � 2.31 0.67 � 0.15 4.94 � 0.09

Greedy 75.87 � 2.32 0.62 � 0.22 12.04 � 0.13
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will not recover. Another failure mode for agents lacking learning is that FB and Greedy fre-

quently get stuck in cycles in which both agents are holding objects that must be merged

(e.g., a plate and lettuce). They fail to coordinate their actions such that one puts their object

down in order for the other to pick it up and merge. Bayesian Delegation can break these

symmetries by yielding to others so long as the group makes net progress toward the

Fig. 3. Recipes and example partial orderings. All sub-tasks are expressed in the Merge operator.
In (a) Tomato, the task is to take an unchopped tomato and then chop, plate, and deliver it. In (b)

Tomato + Lettuce, the task builds on Tomato and adds chopping, plating, and delivering a piece of lettuce. In

(c) Salad, the two chopped foods are combined on a single plate and delivered. The example plans show one

of many possible orderings for completing the recipe.
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completion of one of the sub-tasks. For these reasons, only Bayesian Delegation performs

on par (if not more efficiently) with three agents than with two agents. As additional agents

join the team, aligning plans becomes even more important in order for agents to avoid per-

forming conflicting or redundant sub-tasks.

4.2. Heterogeneous teams

We then evaluated the ad hoc performance of the agents, where each agent was paired

with the other agent types (heterogeneous teams). Our results show that Bayesian Delega-

tion is a competent ad hoc collaborator. None of the agents had any prior experience with

the other agents. Fig. 4 shows the performance of each agent when matched with each

other type and in aggregate across all recipe–kitchen combinations. When Bayesian Dele-

gation was paired with UP, D&C, and Greedy, the dyad performed better than when UP,

D&C, and Greedy were each paired with their own type. Because Bayesian Delegation

can learn in-the-moment, it can overcome some of the ways that the alternative agents

get stuck. UP performs better when paired with Bayesian Delegation or FB compared to

the homogeneous team results, suggesting that as long as one of the agents is initialized

with smart priors, it may be enough to compensate for the other’s uninformed priors.

D&C and Greedy perform better when paired with Bayesian Delegation, FB, or UP. Cru-

cially, these three agent types are all capable of representing cooperative plans where

both agents cooperate on the same sub-task.

4.3. Human inferences

Finally, we quantitatively compared the inferences made by Bayesian Delegation to those

made by people in these same settings. Sixty participants were recruited from Amazon

Fig. 4. Performance of each agent type results for each kitchen–recipe (lower times and faster completions

are better) for homogeneous teams of two and three agents. The row shows the kitchen and the column

shows the recipe. Within each kitchen–recipe (row–column), the left graph shows the number of time steps

needed to complete all sub-tasks. The dashed lines on the left graph represent the optimal performance of a

fully centralized team. The right graph shows the fraction of sub-tasks completed over time. The Bayesian

Delegation agent completes more sub-tasks and does so more quickly compared to the alternatives (N = 20

random seeds each). Bolded numbers show best performing model.

S. A. Wu et al. / Topics in Cognitive Science (2021) 13



Mechanical Turk where they observed scenes (a few time steps) of two agents working

together (see Fig. 5) and were then asked to make probabilistic judgments about which sub-

tasks each agent was carrying out as the interactions unfolded. The stimuli include a variety

of coordinated plans such as instances of clear task allocation (e.g., Fig. 5a) and of ambigu-

ous plans where the agent intentions become more clear over time as the interaction contin-

ues (e.g., Fig. 5d). Each participant made 51 distinct judgments. We measured the

correlation coefficient (R) between mean participant judgments and beliefs formed by our

model (P(ta|H)) after observing the same trajectory of interactions H.
In Fig. 5, we show the six scenes presented to participants in the experiment, along

with the mean of participant judgments and inferences made by Bayesian Delegation at

each time step. Generally, the model captures people’s relative beliefs about which task

allocations are most probable given the interactions observed so far. For some trajectories

(e.g., Fig. 5a,f), the model is much more confident about one particular task allocation

than the rest, but in all cases this still corresponds with the most probable allocation

inferred by people as well. Even when priors are misaligned (such as in Fig. 5d), Baye-

sian Delegation is able to correctly update its beliefs by the end of the trajectory.

We further compared the predictions made by all five models and quantified the over-

all correspondence of each model with human inferences. Fig. 6 shows that all four

Fig. 5. Ad hoc performance. (Left) Rows and columns correspond to different agent types. Each cell is the

average number of time steps (the lower/lighter the better) of the row agent type teamed with the column

agent type. Results are averaged across all nine 2-agent kitchen–recipes (N = 20 random seeds each). (Right)

Average performance (�standard error of the mean) of agents when paired with the others.
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alternative models are less aligned with human judgments than Bayesian Delegation is. In

particular, priors may help capture people’s initial beliefs about the high-level plans

agents have, while belief updates may be important for tracking how people’s predictions

evolve over the course of an interaction. For instance, updates are especially important in

Fig. 5d where the observed actions are initially ambiguous. When the left agent moves to

put the tomato on the counter at time step t = 2, this may be interpreted as either passing

Merge (Tomato.chopped, Plate[]) or Merge (Lettuce.un-
chopped, Knife), but after only a few time steps, the former emerges as more

probable. With only a single free parameter (β) optimized for correlation with human

data, Bayesian Delegation captures the fine-grained structure of human sub-task infer-

ences. These results suggest Bayesian Delegation may help us build better models of

human ToM, enabling machines to effectively cooperate with people.

5. Discussion

We developed Bayesian Delegation, a new algorithm inspired by and consistent with

human ToM. Bayesian Delegation enables efficient ad hoc coordination by rapidly infer-

ring the sub-tasks of others. Agents dynamically align their beliefs about who is doing

what, which allows them to determine when they should help another agent on the same

sub-task and when they should work divide-and-conquer for increased efficiency. Baye-

sian Delegation also enables agents to complete sub-tasks that neither agent could achieve

on its own. These features reflect many natural aspects of human ToM and cooperation

(Tomasello, 2014). Indeed, like people, it makes predictions about sub-task allocations

from only sparse data, and it does so in ways consistent with human judgments.

While Bayesian Delegation reflects progress toward human-like coordination, there are

still limitations which we hope to address in future work. One challenge is that when agents

jointly plan for a single sub-task, they currently have no way of knowing when they have

completed their individual “part” of the joint effort. Consider a case where one agent needs

to pass both lettuce and tomato across the divider for the other to chop it. After dropping off

Fig. 6. Scenes and results for the human inference experiment. Each agent’s past trajectory is illustrated by a

dotted path, with sharp curves into counters representing picking up or putting down an object. To the right

of each trajectory are the inferences made by the model (Bayesian Delegation) and the average participant

judgment. The legend notes the possible task allocations of agents (1 or 2) working individually or together

(Joint): C = chop, P = plate, D = deliver, T = tomato, L = lettuce, and S = salad. For example, 1:C(T)

refers to Agent 1 chopping the tomato. Error bars are the standard error of the mean.
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the lettuce, the first agent should reason that it has fulfilled its role in that joint plan and can

move on to the next task, that is, that the rest of the sub-task depends only on the actions of

the other agent. If agents were able to recognize when their own specific roles in sub-tasks

are finished, they could look ahead to future sub-tasks that will need to be done even before

their preconditions are satisfied. At some point, as one scales up the number of agents, there

can be “too many cooks” in the kitchen! Other, less flexible mechanisms and representa-

tions will likely play a crucial role in coordinating the behavior of larger groups of agents

such as hierarchies, norms, and conventions (Bicchieri, 2006; Lerer & Peysakhovich, 2019;

Lewis, 1969; Young, 1993). These representations are essential for building agents that can

form longer term collaborations which persist beyond a single short interaction and are cap-

able of partnering with human teams and with each other.
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